

Nanomaterials Enabled Smart Systems

Pei Dong Assistant Professor Department of Mechanical Engineering George Mason University

April 30th, 2024

2

Nanomaterials Enabled Smart Systems

For public health 1.

Overview

- 2. for water treatment
- 3. for energy devices

Hazardous materials: solid, liquid & gas

Indoor hazard

- Formaldehyde (CH2O)
- Long-term health effects & cause cancer

Biomarkers for specific diseases

 Cyclohexane and benzene levels in breath: mycobacterium tuberculosis (M. tb)

https://www.airmasters.ca/2018/04/01/volatile-organic-compounds/ D. Kim, et. al, communications materials,5,41, 2024

Existing sensors

Sensors

Electrochemical sensors:

- Advantages: quantification at ppm level with low-power, high resolution, better repeatability
- **Disadvantages:** cross-sensitivity, narrow working temperature, difficulties in determining baseline

M. Asri, et. al, IEEE Sensors Journal, 99, 1, 2021 C. Park et. al, ACS sensors, 3, 11, 2432,2018

(VOC)

New approach: **Species-selective detection of VOC**

Methanol

Ethanol

Acetone

Formaldehyde

And their mixer

۲

۲

٠

۲

1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [C4mpy] [NTf2] dimethyl sulfoxide (DMSO) X. Huang, et. al, P. Dong*, ACS Sensor, 2023, 8, 3389-3399

Machine learning approach: Linear discriminant analysis (LDA)

Smart system for Hazard Detection & Disinfection

Sensors Regulated System

Public Safety and Health

Current solution for disinfectant

- Common disinfectant: ethanol, Isopropanol, hydrogen peroxide, phenol, lactic acid, chlorine dioxide, etc.
- Cost: \$0.12 \$0.75 per sq. ft. or \$85 \$125 per hour
- **Challenge:** evaporation and degradation, Cumulative consumption and labor work
- Demand for new disinfection technology with features in high efficiency, low-cost and reusable

Reactive Oxygen Species (ROS)

ROS

Applications

a. Self-cleaning membrane

c. Bacteria disinfection

Amit Joshi et al, *Nature Nanotechnology*, 2008, 3, 41–45 Chia-Ying Chen et al., *Environmental Science & Technology*, 2010, 44, 6674 – 6679 Cao et al., Chemical Engineering Journal, Volume 431, 2022, 134005

Carbon nanotubes (CNTs) & photodynamic effects

• Chirality, surface chemistry, electrical conductivity and surface charge, defects, dispersion

400

1.000

800

Wavelength (nm)

1.200

Ryosuke Fukuda et al., *Carbon*, 2020, 161, 718 – 725 Tu, X. et al., Nature, 460(7252), 250–253. Numerical simulation of band gaps for CNTs with different chirality. Collaborate with Parameswari Raju.

Generating ROS by photodynamic effects

A new system

- Green approach (photon)
- Reusable or last long enough
- Inert environment

Ionic Liquid (IL): [C4mpy][NTf2]

- 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide
- Store 9 hour*

*X. Huang, et. al, Materials Today Sustainability, 19, 2022, 100171 X. Huang et. al, Materials Today Energy, 32, 101242, 2023

O₂⁻ calculation & *In-situ* monitor

	C _o (mmol)	D ₀ (10 ⁻⁹ m²/s)	α	i _{ss} (nA)
Suspension	0.43	2.8	0.36	2.897
IL	1.33	0.33	0.44	1.070

Cyclic voltammetry and chronoamperometry (CA): oxygen consumption

• In-situ monitoring for O_2^-

 $R(t) = i_{po}(t)/i_{pr}(0)$ C(t) = [R(t)-R(0)]/R(0)

• Equations to calculate O₂⁻%

peak current

 $i_p = (2.99 \times 10^5) \alpha^{0.5} A C_o D_o^{0.5} v^{0.5}$ (1) $C_o D_o^{1/2} --- Eq 1 by CV$

$$i_{ss} = 4nFD_oC_or_o$$
 (2) $C_oD_o --- Eq 2 by CA$

$$|E_{p} - E_{p/2}| = \frac{1.857RT}{\alpha F}$$
 (3) $\alpha --- Eq 3 by CV$

 $R = i_{po} / i_{pr} = C_x D_x / C_o D_o$

 α : charge transfer coefficient; A: the surface area of the working electrode; C_o : the bulk concentration of O_2 ; D_o : diffusion coefficient of O_2 ; v: scan rate in V/s; E_p : the peak potential; $E_{p/2}$: the half-peak potential in V; R: the universal gas constant. C_x : $[O_2^{-1}]$; D_x : the diffusion coefficient of O_2^{-1} .

IL: No change -> Reusable, also supported by UV-vis Store superoxide for more than 65 hours

SWCNTs

In-situ characterization through Conductive-AFM (C-AFM)

- Resistance increase
- Voltage increase after irradiation

Sustainable system for disinfection

Table 1

Conductive atomic force microscopy and kelvin probe force microscopy results for ultraviolet-treated and non-treated s-single-walled carbon nanotubes .

s-SWCNTs	C-AFM	KPFM	
	Conductivity (nA)	Potential (mV)	
UV-treated	44.08 ± 0.47 50 79 ± 1.00	-33.15 ± 1.51	
non-treated	30.79 ± 1.00	-00.83 ± 2.00	

Ongoing bacteria & virus tests

Changes in s-SWCNTs' surface chemistry, including lower in sp2/sp3, decreased atomic content of p-p*, and reduced surface functional groups.

Other efforts: Water-energy-food nexus

Iman Nuwayhid, et. al, Front. Envion. Sci, 10, 2022, 879081

Future work: Smart system by design

Acknowledgement

Group members:

- Dr. Rui He (graduated); Dr. Xiaozhou Huang (graduated); John Shea; Pengxi Zhu; Siyuan Wang, Boshen Xu
- Crystal Bowers, Samuel Athapaththu, Ashley Kong, Ali Boldaji, Chengbo Huang, Akai A Senthill, Mohammad Sheran

Collaborators:

• Prof. Qiliang Li, Prof. Monique Van Hoek

Thank you!

pdong3@gmu.edu