S
ReLeTI X

Learning Robot Navigation in
Challenging Environments

£

i
Xuesu Xiao, Ph.D.

Assistant Professor

Computer Science, George Mason University



Disaster Robotics

Modular Snake (Mexico City Earthquake)

[XX etal.,
ICRA15]

- Overhead Cameras
- Locomotive Reduction

EMILY (Greece Refugee Crisis)

- UAV-USV Team
- Visual Pose Stabilization
- Visual Navigation

[XX et al., IROS17,
D, XX, M, SSRR17]

PackBot (Fukushima Daiichi)

[F, XX, M, THMS21,
XX et al., RA-L20,
XXetal., FSR19

XX et al., SSRR19a, - Viewpoint Theory
XX et al,, SSRR19b, - Risk-Awareness
XX et al., IROS18, ] .
XX et al,, SSRR18 Tethered Flight
(Best Paper Finalist),

XX et al., SSRR17]




Learning Navigation in Challenging Environments

Highly-Constrained
Environments

[XX et al., RA-L21a, XX et
al., ICRA21, W, XX et al.,
IROS21]
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The BARN Challenge and Datasets

g - B ICRA 2022 P
Philadelphia

[XX et al. RAM22]

ICRA 2023

London
[XX et al. RAM23]

DynaBARN [N, J, H, X, L, XX, S, SSRR22]

Benchmark Autonomous Robot Navigation (BARN)
[P, T, XX, S. SSRR20]

World: 5 World: 57 World: \109 World: 193 World: 244 World: 285

~ L <

Difficulty: Difficulty: Difficulty: Difficulty: Difficulty: Difficulty:
2.366 s/m 2.691 s/m 2.924 s/m 3.386 s/m 3.915 s/m 4.544 s/m




Learning from Hallucination (LfH)

Motivation: Highly-constrained conditions require more computation
for classical sampling- or optimization-based methods or high-quality,
but more expensive training data for learning methods.

Inspiration: Agile maneuvers in relatively (or completely) open spaces
can be optimal for certain highly constrained environments.

Solution: Hallucinate many highly constrained environments to
generate training data to learn an agile motion planner.

Most Constrained -

LfH [XX et al., RA-L21a] U . Training Agile
Minimal nreachable .

[XX et al., ICRA21] Set(s) > Data =» Motion

Planner

Learning the distribution of all

[W, XX et al., IROS21] .










Three Learning from Hallucination (LfH) methods







(2) A minimal obstacle hallucination

Then randomly sample additional obstacles




(3) Learn obstacle distributions

Then sample from learned distributions
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Motion Planning:

Find a motion planner
as a function

Hallucination:

Find a Hallucinator as a
function
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Motion Planning: Hallucination:

Find a motion planner
as a function

Find a Hallucinator as a
function



Learning from Most Constrained Hallucination
[XX et al., RA-L21a]

* Hallucinating the most constrained unreachable set

:bst — g(p ‘ Ce, Cg) it vcobst S %obsta
f* (Cobst ‘ Ccacg) =p = Oobst C C;kbsty

* Train function approximator
—1 .
99 () ¥ obst — P

* During agile deployment
» Seek help from coarse global plan
* Create runtime hallucination
* Query learned ge_l
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Learning from Minimal Hallucination
(XX et al., ICRA21]

* Motivation: What if a global path is not available for runtime
hallucination?

* Inspiration: Not every obstacle is required to make a plan optimal.

 Solution: Identify a (not unique) minimal unreachable set, randomly
sample obstacles in addition to this set for training, and deploy
without runtime hallucination (Hallucinated Learning and Sober

Deployment, HLSD). ﬁ




Learning from Minimal Hallucination
(XX et al., ICRA21]

Hallucinating a minimal unreachable set
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Learning from Learned Hallucination (LfLH)

[W. XX et al., IROS21]

e

Learning Hallucination Learning Motion Planning
(Encoder-Decoder) (Behavior Cloning)

Reconstruction Q‘
Loss " Learnable
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Dyna-LiLH:
Learning Agile Navigation in Dynamic
Environments from Learned Hallucination

Saad Abdul Ghani, Zizhao Wang, Peter Stone, and Xuesu Xiao

George Mason University and The University of Texas at Austin



Learning Navigation in Challenging Environments



Learning Inverse Kinodynamics sxeta, sat2ms

* Objective: Navigate a mobile robot to track a reference trajectory
during deployment as quickly and as accurately as possible.

Total
time

T
J = T+7/0 |2 (t) — 2z (t)]|?dt.

Accuracy of

trajectory
@ @ execution
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Learning Inverse Kinodynamics ueta, sz

Problem: kinodynamic function depends on

unknown world states!

w

| World State |

ut = f_l(A:c,a:ﬂ u &= f(x,u, w) x
. F Ki .
> D(?5|red 1 Controller | Controls orward medynamlc Robot State
Trajectory Function
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Learning Inverse Kinodynamics sxeta, sat2ms

w
Our Approach [World stae
uw* = YAz, z,w) u T = f(z,u,w) X
> D(?5|red Controller Controls Forward Kmf)dynamlc Robot State
Trajectory Function
All-Terrain
Model

A y y — g(x7 w)

fa(Az, zly) ~ F71(Az, zlw)

Observations |

Observation Function |«
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Learnl Ng IMU-IKD XX et al,, RA-L21b]

Implementation

Z NVIDIA
Jetson

Control Inputs:  Hokuyo UST-10LX
- Linear Velocity LiDAR
- Steering Curvature ~ i

4-Wheel Drive S

Ackermannl
Steerin
i 5 i

y K

ectornav
¥5000mAh 11.1¥ VN-100 |

LiPo Battery L IMU

UT Automata

600 " 256 256 4 32 32 2

Neural Network Architecture
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Learning IMU-IKD pxeta, ra-i21

B Basciine [ Ablation BIMU-IKD || Reference

Seen Terrain
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Learning IMU-IKD pxeta, ra-i21

. Failure Turn Rate per Speed (%) . Failure Turn Rate per Turn (%)
mBaseline mBaseline
so- mAblation - mAblation

m=Learning

mLearning

40+
30
20+
10 I .
. -
1.6m/s 1.7m/s1.8 m/s1.9m/s T8
|

Failure Turng
80

(Un‘  : ) : -' R : A% ;
» mBaseline ; cromm : NS, — mBaseline
=Learning ' ] mLearning
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20

10

2.4m/s 2.5m/s 2.6 m/s 2.7m/s
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Learning Visual-Inertial IKD (VI-IKD) s 4 # xxetat, mosz2

online patch extraction from observazm?hfistory buffer

3x3, 3x3

2-layer CNN 5
%,

Randomly sample a terrain 256, 256, 256 256, 256, 256
patch from multiple viewpoints

3-layer Fully 4-dim | 3-layer Fully V. W
> )

o Connected Connected
‘ @ Lt+1
1-second inertial history D _9

Navigation Planner

Image Patch Extraction to Anticipate Adding Vision in Addition to Inertia in the Observation y for
Upcoming Kinodynamic Changes Better Representation of Unknown World State w
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Off-Road Challenges
From High-Speed to Vertically Challenging Terrain




The Verti-Wheelers Project

[D, P, N, XX, ICRA24]
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Xt = (xtayt7¢t)
uy = (vg, W) ' Afree
Xt




Xer1 = f(X¢, ug) T '

Xt = (xtayt7¢t)

Xfree X = Xfree U Xobs
X € SE(2)

Uy = (vtawt)
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Planning with Learned 6-DoF Forward Model
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[D, P. XX, under review]
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Multi-Robot Mobility on Vertically Challenging
Terrain?



Learning Navigation in Challenging Environments



SCAND: A Large-Scale Dataset of Socially &%
Compliant Navigation Demonstration s me

e 25 miles (8.7 hours) of real-world data (~0.5TB)
e 138 trajectories, 15 days

e Data collected on two robots: Jackal and Spot

* Indoor and outdoor environments @ UT Austin

* Four different human demonstrators

* Coarse labels of social interactions

43




MuSoHu: Multi-Modal Social Human
NaVigatiOn Dataset (N, N, P D, XX, IROS23]

* 50km, 10 hours, 150 trials, 7 humans, and counting!

| — Linear Velocity (m/s)| |— Angular Velocity (rad/s)| | —— Navigation Path|

1.0
0.5
0.0

-0.5

-1.0
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Performer-MPC: Socially Compliant Navigation Behavior
by Real-Time Transformers xxetai, corr22

Planning the most efficient, shortest length, minimal time plan?

<— Training
/ D / D\\ ! v Learned X L on
\ L4 I n 1 I I / Cost o Expert
" | msn'_ &3 key' | & Value Embeds. / > e <I

A
E

v

. ]
£ _J
~

ngineer . .
B K / ot Trajectories
Context Performer
(Occupancy Grid, etc.) K (Scalable Attention) / - [nference Robot




Performer-MPC: Socially Compliant Navigation Behavior
by Real-Time Transformers xxetai, corr22

RGN By MPC Explicit Policy Regular MPC Exp11c1t Policy

[e5 e

s T e s

Performer-MPC ~ ‘ ,
l 1%

Blind Corner Pedestrian Obstruction
Learning to anticipate Pedestrians Learning to respect comfort distance
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Team Coordination on Graphs o, 1w xx s ios2s

Joint State Graph (JSG)
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Team Coordination on Graphs o, 1w xx s ios2s

Critical Joint State Graph (CJSG)

Environment Graph

es
cupportine nod

Base Graph Support Graph

e g nodes
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— =) Support
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Adaptive Planner Parameter Learning (APPL):

Leveraging Non-Expert Interactions in Social Environments

World: 109

Difficulty:
386 s/

APPLR

‘World: 244

[X, D, N, XX et al., ICRA21] /

APPLE
[W, XX et al., RA-L21]

Reinforcement
Learning

Demonstration

Classical
Autonomy System

Evaluative
Feedback

A\

Interventions

[XX et al., RA-L20]

APPLI
[W, XX et al., ICRA21]
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Learning Navigation in Challenging Environments

Camera

Highly-Constrained Offroad Social
Environments Environments Environments
[XX et al., RA-L21a, XX et [XX et al., RA-L21b, K, S, [XX et al., CoRL22, K, N, XX et
al., ICRA21, W, XX et al., A R, XX et al., IROS22, al., RA-L22, N, N, P. D, XX,
IROS21] D, P N, XX, ICRA24, D, IROS23]

P, XX, under review]
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Biorobotics
Laboratory

CRASAR

E. Cappo C. Gong

O
TH! &
ROBOTICS o
INSTITUTE . ' ' '
Howie Choset W. Zhen Jin Dai M. Traverse

LARG

Learning Agents Research Group

The University of Texas at Austin

»'

Joydeep Biswas

G. Warnell Sadegh Rabiee

<

Peter Stone Abigail Truong Daniel Perille G. Dhamankar Anirudh Nair Kavan Sikand Pranav Atreya R L
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Tingnan Zhang K. Choromanski Edward Lee

PRe2A

Fei Xia Mikael Persson  D. Kalashnikov Leila Takayama Roy Frostig Jie Tan Carolina Parada Vikas Sindhwani

Stepehn Tu Sumeet Singh Peng Xu

¥ Google Research

College of Engineering
and Computing

Zechen Hu Xuan Wang

R@@@ﬁx

Aniket Datar Chenhui Pan Aaron Nguyen Mohammad Nazeri Amir Payandeh Manshi Limbu
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Learning Navigation in Challenging Environments

Camera

Highly-Constrained Offroad Social
Environments Environments Environments
[XX et al., RA-L21a, XX et [XX et al., RA-L21b, K, S, [XX et al., CoRL22, K, N, XX et
al., ICRA21, W, XX et al., A R, XX et al., IROS22, al., RA-L22, N, N, P. D, XX,
IROS21] D, P N, XX, ICRA24, D, IROS23]

P, XX, under review]
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