

Learning Robot Navigation in Challenging Environments

Xuesu Xiao, Ph.D.

Assistant Professor

Computer Science, George Mason University

Disaster Robotics

[XX et al., ICRA15]

- Overhead Cameras
- Locomotive Reduction

[**XX** et al., IROS17, D, **XX**, M, SSRR17]

- UAV-USV Team
- Visual Pose Stabilization
- Visual Navigation

[F, XX, M, THMS21, XX et al., RA-L20, XX et al., FSR19 XX et al., SSRR19a, XX et al., IROS18, XX et al., SSRR18 (Best Paper Finalist), XX et al., SSRR17]

- Viewpoint Theory
- Risk-Awareness
- Tethered Flight

Learning Navigation in Challenging Environments

Highly-Constrained Environments

[XX et al., RA-L21a, XX et al., ICRA21, W, XX et al., IROS21]

Offroad Environments

[XX et al., RA-L21b, K, S, A, R, XX et al., IROS22, D, P, N, XX, ICRA24, D, P, XX, under review]

Social Environments

[XX et al., CoRL22, K, N, XX et al., RA-L22, N, N, P, D, XX, IROS23]

The BARN Challenge and Datasets

ICRA 2022 Philadelphia [XX et al. RAM22]

ICRA 2023 London [xx et al. RAM23]

DynaBARN [N, J, H, X, L, xx, S, SSRR22]

Benchmark Autonomous Robot Navigation (BARN) [P, T, XX, S. SSRR20]

Learning from Hallucination (LfH)

Motivation: Highly-constrained conditions require **more computation** for classical sampling- or optimization-based methods or high-quality, but **more expensive training data** for learning methods.

Inspiration: Agile maneuvers in relatively (or completely) open spaces can be optimal for certain highly constrained environments.

Solution: Hallucinate many highly constrained environments to generate training data to learn an agile motion planner.

Three Learning from Hallucination (LfH) methods

(3) Learn obstacle distributions

Motion Planning:

Find a motion planner as a function

$$f(\cdot)$$

Hallucination:

Find a Hallucinator as a function

$$f^{-1}(\cdot)$$

Motion Planning:

Find a motion planner as a function

$$f(\cdot)$$

Hallucination:

Find a Hallucinator as a function

$$f^{-1}(\cdot)$$

Learning from *Most Constrained* Hallucination [**XX** et al., RA-L21a]

Hallucinating the most constrained unreachable set

$$C_{obst}^* = g(p \mid c_c, c_g) \text{ iff } \forall C_{obst} \in \mathscr{C}_{obst},$$

$$f^*(C_{obst} \mid c_c, c_g) = p \implies C_{obst} \subseteq C_{obst}^*,$$

Train function approximator

$$g_{\theta}^{-1}(\cdot): C_{obst}^* \to p$$

- During agile deployment
 - Seek help from coarse global plan
 - Create runtime hallucination
 - Query learned g_{θ}^{-1}

 $p = f(C_{obst}^* \mid c_c, c_q)$

 $\{\tilde{c_j} \mid 1 \le j \le m\} = gp(C_{obst}^{real} \mid c_c, c_g)$

 $C_{obst}^* \approx h(\{\tilde{c_j} \mid 1 \le j \le m\})$

Learning from *Minimal* Hallucination [XX et al., ICRA21]

- Motivation: What if a global path is not available for runtime hallucination?
- Inspiration: Not every obstacle is required to make a plan optimal.
- **Solution:** Identify a (not unique) minimal unreachable set, randomly sample obstacles in addition to this set for training, and deploy without runtime hallucination (Hallucinated Learning and Sober Deployment, HLSD).

Learning from *Minimal* Hallucination

[XX et al., ICRA21]

Hallucinating a minimal unreachable set

$$\frac{C_{obst}^* = g(p \mid c_c, c_g)}{C_{obst}^{min} = g(p \mid c_c, c_g)} C_{obst}^{min} = o(p \mid c_c, c_g) \\
\mathcal{C}_{obst}^{min} = \{C_{obst}^{min} \mid \forall c \in C_{obst}^{min}, f(C_{obst}^{min} \setminus \{c\} \mid c_c, c_g) \neq f(C_{obst}^{min} \mid c_c, c_g)\}$$

Point Mass Holonomic Shortest-Path

Learning from Learned Hallucination (LfLH)

[W, XX et al., IROS21]

Dyna-LfLH:

Learning Agile Navigation in Dynamic Environments from Learned Hallucination

Saad Abdul Ghani, Zizhao Wang, Peter Stone, and Xuesu Xiao George Mason University and The University of Texas at Austin

Learning Navigation in Challenging Environments

Highly-Constrained Environments

[XX et al., RA-L21a, XX et al., ICRA21, W, XX et al., IROS21]

Offroad Environments

[XX et al., RA-L21b, K, S, A, R, XX et al., IROS22, D, P, N, XX, ICRA24, D, P, XX, under review]

Social Environments

[XX et al., CoRL22, K, N, XX et al., RA-L22, N, N, P, D, XX, IROS23]

Learning Inverse Kinodynamics [XX et al., RA-L21b]

• Objective: Navigate a mobile robot to track a reference trajectory during deployment as quickly and as accurately as possible.

Learning Inverse Kinodynamics [XX et al., RA-L21b]

Learning Inverse Kinodynamics [XX et al., RA-L21b]

Learning IMU-IKD [XX et al., RA-L21b]

Implementation

UT Automata

Neural Network Architecture

Learning IMU-IKD [XX et al., RA-L21b]

Learning IMU-IKD [XX et al., RA-L21b]

Learning Visual-Inertial IKD (VI-IKD) [K, S, A, R, XX et al., IROS22]

Image Patch Extraction to Anticipate Upcoming Kinodynamic Changes

Adding Vision in Addition to Inertia in the Observation y for Better Representation of Unknown World State w

Off-Road Challenges From High-Speed to Vertically Challenging Terrain

The Verti-Wheelers Project

Planning with Learned 6-DoF Forward Model

Multi-Robot Mobility on Vertically Challenging Terrain?

Learning Navigation in Challenging Environments

Highly-Constrained Environments

[XX et al., RA-L21a, XX et al., ICRA21, W, XX et al., IROS21]

Offroad Environments

[XX et al., RA-L21b, K, S, A, R, XX et al., IROS22, D, P, N, XX, ICRA24, D, P, XX, under review]

Social Environments

[XX et al., CoRL22, K, N, XX et al., RA-L22, N, N, P, D, XX, IROS23]

SCAND: A Large-Scale Dataset of Socially Compliant Navigation Demonstration [K, N, XX et al., RA-L22]

- 25 miles (8.7 hours) of real-world data (~0.5TB)
- 138 trajectories, 15 days
- Data collected on two robots: Jackal and Spot
- Indoor and outdoor environments @ UT Austin
- Four different human demonstrators
- Coarse labels of social interactions

MuSoHu: Multi-Modal Social Human Navigation Dataset [N, N, P, D, XX, IROS23]

• 50km, 10 hours, 150 trials, 7 humans, and counting!

Performer-MPC: Socially Compliant Navigation Behavior by Real-Time Transformers [xx et al., CoRL22]

Planning the most efficient, shortest length, minimal time plan?

Social compliance improves motion planning performance!

Performer-MPC: Socially Compliant Navigation Behavior by Real-Time Transformers [xx et al., CoRL22]

Blind Corner Learning to anticipate Pedestrians

Pedestrian Obstruction Learning to respect comfort distance

Team Coordination on Graphs [0, L, H, W, XX, S, IROS23]

Joint State Graph (JSG)

Robot A Position

Team Coordination on Graphs [0, L, H, W, XX, S, IROS23]

Critical Joint State Graph (CJSG)

Adaptive Planner Parameter Learning (APPL): Leveraging Non-Expert Interactions in Social Environments

APPLR [X, D, N, **XX** et al., ICRA21]

Reinforcement

Learning

Demonstration

Classical **Autonomy System**

Interventions

APPLD [**XX** et al., RA-L20]

APPLE [W, **XX** et al., RA-L21]

Evaluative Feedback

APPLI [W, XX et al., ICRA21]

Learning Navigation in Challenging Environments

Highly-Constrained Environments

[**XX** et al., RA-L21a, **XX** et al., ICRA21, W, **XX** et al., IROS21]

Offroad Environments

[XX et al., RA-L21b, K, S, A, R, XX et al., IROS22, D, P, N, XX, ICRA24, D, P, XX, under review]

Social Environments

[XX et al., CoRL22, K, N, XX et al., RA-L22, N, N, P, D, XX, IROS23]

CRASAR

Robin Murphy

M. Suhail

Biorobotics Laboratory

Jan Dufek

T. Woodbury

Howie Choset

W. Zhen

Jin Dai

M. Traverse

Peter Stone

G. Warnell

Bo Liu

Zifan Xu

Zizhao Wang

Haresh Karnan

Joydeep Biswas

Abigail Truong

Daniel Perille

G. Dhamankar

Anirudh Nair

Kavan Sikand

Pranav Atreya

Everyday Robots

Tingnan Zhang

K. Choromanski

Edward Lee

Anthony Francis

Jake Varley

Stepehn Tu

Sumeet Singh

Peng Xu

Fei Xia

Mikael Persson

D. Kalashnikov

Leila Takayama

Roy Frostig

Jie Tan

Carolina Parada

Vikas Sindhwani

Sara Oughourli

College of Engineering and Computing

Xuan Wang

Aniket Datar

Chenhui Pan

Aaron Nguyen

Mohammad Nazeri Amir Payandeh

Manshi Limbu

Learning Navigation in Challenging Environments

Highly-Constrained Environments

[XX et al., RA-L21a, XX et al., ICRA21, W, XX et al., IROS21]

Offroad Environments

[XX et al., RA-L21b, K, S, A, R, XX et al., IROS22, D, P, N, XX, ICRA24, D, P, XX, under review]

Social Environments

[XX et al., CoRL22, K, N, XX et al., RA-L22, N, N, P, D, XX, IROS23]